

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Presenter: Christina Petlowany

10/11/2022

Motivation Videos

https://youtu.be/ks0Z0Is6GKU

https://youtu.be/LBmlxZFGxE8

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." *Proceedings of the fourteenth international conference on artificial intelligence and statistics*. JMLR Workshop and Conference Proceedings, 2011.

Motivation and Main Problem

- Most robot problems have some type of sequential nature
 - Force control
 - Manipulation
 - Navigation
 - Vision (sometimes)
 - And more!

- Robot Learning (RL) needs to account for temporal error accumulations
 - Especially where expert demonstrations do not cover the entire state space

Problem Setting

- Sequential problems are not Independent and Identically Distributed
 - The future state depends on the action input
- This is a problem in the Imitation Learning (IL) domain where expert demonstrations do not cover all possible perturbations
 - Existing approaches compound errors resulting from mistakes over time

with i.i.d -> Error $\leq \epsilon T$

```
without i.i.d -> Error \propto \epsilon T^2
```


Imitation Learning

- Implemented in cases where the reward is complex
 - Learn a reward from demonstrations
 - Explicitly specify a reward \rightarrow how would you design a reward function for SuperTuxKart?
 - Need to go fast overall
 - Might need to slow down for curves
 - Avoid other vehicles (but not always!)
 - Stay on the road
 - Drifting?

https://www.youtube.com/watch?v=V7CY68zH6ps

Distribution mismatch

- Training dataset != test dataset
- In this scenario, occurs when the errors accumulate in the test environment and the test environment no longer reflects the expert demonstrations
- Not always solved by adding information

De Haan, Pim, Dinesh Jayaraman, and Sergey Levine. "Causal confusion in imitation learning." *Advances in Neural Information Processing Systems* 32 (2019).

Masiha, Mohammad Saeed, et al. "Learning under distribution mismatch and model misspecification." 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021.

Related Work

- Existing supervised learning approach
 - Error $\propto \epsilon T^2$
- Forward Training (Ross and Bagnell 2010)
 - Trains a policy at each time step
 - These policies are trained on the expected distribution of states for that time step
 - Very computationally expensive, must have T policies

Related Work (continued)

- SMILe (Ross and Bagnell 2010)
 - Switch between executing the trained policy and the policy of the expert
 - Can stop training at any time and remove the expert inputs

Ross, Stéphane, and Drew Bagnell. "Efficient reductions for imitation learning." *Proceedings of the thirteenth international conference on artificial intelligence and statistics.* JMLR Workshop and Conference Proceedings, 2010.

DAgger (Dataset Aggregation)

Iteratively trains policies from expert demonstrations to expand the dataset

$$P_{e} \xrightarrow{\rightarrow} D \xrightarrow{\rightarrow} P_{2} \xrightarrow{\rightarrow} D \xrightarrow{\rightarrow} P_{3} \xrightarrow{\rightarrow} D \xrightarrow{\rightarrow} \dots \xrightarrow{\rightarrow} P_{n+1}$$

$$T_{e} \qquad T_{2} \qquad T_{3}$$

Asks the experts for labeling/demonstrations when necessary based on relevant expected states from the new trained policy

DAgger (continued)

Initialize $\mathcal{D} \leftarrow \emptyset$. Initialize $\hat{\pi}_1$ to any policy in Π . for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$. Sample T-step trajectories using π_i . Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert. Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} . end for **Return** best $\hat{\pi}_i$ on validation.

DAgger (continued)

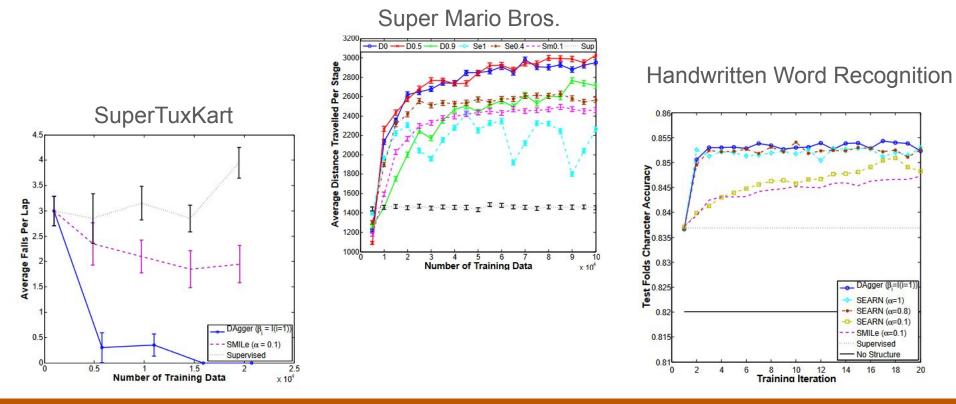
- Proofs for how the error is limited
- if N is $\tilde{O}(T)$: $E \le \varepsilon_n + O(1/T)$
 - $\circ \quad \boldsymbol{\epsilon}_n \text{ is the true loss of the policy}$
- ♦ if N is O(T² log(1/ δ)): with probability (1- δ), E ≤ ε_n + O(1/T)
 - \circ \mathbf{E}_{n} is the training loss
- Proofs to show guarantee finding policy with ε surrogate loss

Experimental Results Videos

https://www.youtube.com/watch?v=V00npNnWzSU

https://www.youtube.com/watch?v=anOI0xZ3kGM

Experimental Results



Critique

The authors mainly cite their own work which leads me to question the generability of their efforts

We here provide a theorem slightly more general than the *Proof.* We here follow a similar proof to Ross and Baone provided by Ross and Bagnell (2010) that applies to (2010). Given our policy π , consider the policy $\pi_{1:t}$, when executes π in the first *t*-steps and then execute the expert π^* . Then

Very expensive, requires availability of expert

Future Work

- More sophisticated ways for generating the trajectories
- Reducing reliance on expert input
- See extended readings

Extended Readings

Brown, Daniel, et al. "Extrapolating beyond suboptimal demonstrations via inverse reinforcement learning from observations." *International conference on machine learning*. PMLR, 2019.

Kober, Jens, J. Andrew Bagnell, and Jan Peters. "Reinforcement learning in robotics: A survey." *The International Journal of Robotics Research* 32.11 (2013): 1238-1274.

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." *Advances in neural information processing systems* 29 (2016).

Bengio, Samy, et al. "Scheduled sampling for sequence prediction with recurrent neural networks." *Advances in neural information processing systems* 28 (2015).

Amodei, Dario, et al. "Concrete problems in Al safety." arXiv preprint arXiv:1606.06565 (2016).

Ross, Stéphane, and Drew Bagnell. "Efficient reductions for imitation learning." *Proceedings of the thirteenth international conference on artificial intelligence and statistics*. JMLR Workshop and Conference Proceedings, 2010.

Summary

- Errors accumulate over time and IL is particularly susceptible to this
- DAgger trains policies and adds relevant demonstrations to the dataset
- DAgger shows significant performance improvements with small increases in training iterations

https://supertuxkart.net/Gallery